I wanted to like Python, but it does not handle categorical data well. With R, you can through continuous and categorical data at it with abandon and easily create a predictive model. With Python / sklearn, categorical data requires too many compromises and too much data munging. Ironically, I moved to Python because it's a real programming language that's great at data manipulation.
R's big limitation for me was that it was inefficient on a single computer. You have to run it on some serious hardware to do anything even moderately large.
I moved back to R with R Studio and the data.table package. I'm playing with running R in the cloud. Requires a little bit of setup, but now I can handle very large tasks without significant limitations.
So, I'd suggest R for anyone serious about data science.